
Application of GPUs in CFD-based Turbine Wake Simulation
Ji Qi

Kyushu University
Fukuoka, Japan

qi.ji.558@s.kyushu-u.ac.jp

Kenji Ono
Kyushu University
Fukuoka, Japan

ono.kenji.693@m.kyushu-u.ac.jp

1 INTRODUCTION
Understanding wind turbine wakes is a key aspect of wind farm
design. The growth of computation capacity has allowed turbine
wake research to be conducted on computers using methods based
on computational fluid dynamics (CFD). However, such methods
involve solving the fluid equations repeatedly on numerous grid
points, which makes the performance of computation crucial to
both the speed and quality of simulation.

In this study, we explore the potential of GPU as a highly parallel
computational device in CFD-based wind turbine wake simulation,
and analyze the perfomance of our program.

2 METHODOLOGY
2.1 Solver Algorithm
The highly turbulent wind field is simulated using the large eddy
simulation (LES) method, which adds an additional viscosity term
to the incompressible Navier-Stokes equation to represent vortices
smaller than the grid size. The LES Navier-Stokes equation is then
solved using the fractional stepmethod, which involves three steps
of velocity-pressure coupled time integral [1].

𝒖∗ = 𝒖𝑛 + Δ𝑡

(
−𝒖𝑛 · ∇𝒖𝑛 + ∇ ·

(
1
𝑅𝑒

+ 𝜈𝑡
)
∇𝒖𝑛

)
(1)

∇2𝑝𝑛+1 = ∇ · 𝒖∗/Δ𝑡 (2)

𝒖𝑛+1 = 𝒖∗ − Δ𝑡∇𝑝𝑛+1 (3)

Equation (2) is solved by PBiCGStab method using a Jacobi pre-
conditioner.

The wind turbine is represented using the actuator line method,
so that the program can use a structured orthogonal grid instead
of a boundary fitted coordinate grid for the turbine [3].

2.2 Implemantation
NVidia HPC SDK is used to develop the multi-GPU program in
this study, with each GPU managed by one process on the host
side. CUDA C++ is used for the GPU part of the program and MPI
for inter-process communication [4].

To reduce the overhead of inter-process communication, we adopt
the communication-hiding technique in the program, which over-
laps the time of non-blocking MPI communication with the com-
putation time of grid points that do not require data exchange with
other processes [2].

For the linear solver, the stencil discretization of equation (2)
on a structured grid results in a well-formed banded coefficient
matrix, which can be represented efficiently by a simple array in
our program.

kernel time(s) time(%)
Jacobi preconditioner 22.85 16.68%

Calculation of 𝒖∗ in equation (1) 20.34 14.85%
Matrix-vector product 11.45 8.36%

Table 1: Kernel time

number of GPUs 4 8 12 16
time (s) 1756 1011 779 659
speedup 1 1.74 2.25 2.66
efficiency 1 0.87 0.75 0.67
Table 2: Strong scaling performance

number of GPUs 1 2 4 8 12 16
time (s) 1765 2027 2232 2302 2329 2329
speedup 1 1.74 3.16 6.14 9.09 12.13
efficiency 1 0.87 0.79 0.77 0.76 0.76

Table 3: Weak scaling performance

3 PERFORMANCE
Performance experiments are carried out on Kyushu University’s
supercompuer system ITO. Each node of ITO’s subsystem B has
four Tesla P100 GPUs.

3.1 Kernel Execution Time
Kernel profiling is carried out for 1000 time steps (undimensional
time 0∼1) using the nvprof tool, the most time consuming kernels
are listed in table 1.

3.2 Scalability
The strong scaling uses a grid of 900×300×300 points in total, which
is a normal grid size of our targeted application scenario, while the
weak scaling uses 300×300×300 grid points per GPU. Both experi-
ments are run for 10000 time steps (undimensional time 0∼10).

REFERENCES
[1] Takeo Kashijima. 1999. Numerical Simulation of Turbulent Flows. Yokendo Ltd.
[2] Jianqi Lai, Hang Yu, Zhengyu Tian, and Hua Li. 2020. Hybrid MPI and CUDA

Parallelization for CFD Applications on Multi-GPU HPC Clusters. Scientific Pro-
gramming 2020 (2020). https://doi.org/10.1155/2020/8862123

[3] Jens Nørkær Sørensen andWen Zhong Shen. 2002. Numerical Modeling of Wind
Turbine Wakes. Journal of Fluids Engineering 124, 2 (05 2002), 393–399. https:
//doi.org/10.1115/1.1471361

[4] Xi Zhang, Xiaohu Guo, Yue Weng, Xianwei Zhang, Yutong Lu, and Zhong Zhao.
2023. Hybrid MPI and CUDA paralleled finite volume unstructured CFD simu-
lations on a multi-GPU system. Future Generation Computer Systems 139 (2023),
1–16. https://doi.org/10.1016/j.future.2022.09.005

https://doi.org/10.1155/2020/8862123
https://doi.org/10.1115/1.1471361
https://doi.org/10.1115/1.1471361
https://doi.org/10.1016/j.future.2022.09.005

	1 Introduction
	2 Methodology
	2.1 Solver Algorithm
	2.2 Implemantation

	3 Performance
	3.1 Kernel Execution Time
	3.2 Scalability

	References

