
Application of GPUs in CFD-based Turbine Wake Simulation
Ji Qi*1, Kenji Ono*2

*Kyushu University, Fukuoka, Japan

1. Introduction
Understanding wind turbine wakes is a key aspect of wind farm design. The growth of 

computation capacity has allowed turbine wake research to be conducted on computers using 
methods based on computational fluid dynamics (CFD). However, such methods involve solving the 
fluid equations repeatedly on numerous grid points, which makes the performance of computation 
crucial to both the speed and quality of simulation. 

In this study, we explore the potential of GPU as a highly parallel computational device in CFD-
based wind turbine wake simulation, and analyze the performance of our program.

2. Mathematical Models
The Large Eddy Simulation (LES) is used for the highly turbulent wind field, which introduces an 

additional viscosity term to represent the effect of small vortices.

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖 = −∇𝑝 + ∇ ∙

1

𝑅𝑒
+ 𝜈𝑡 ∇𝒖 + 𝒇

Eddy viscosity 𝜈𝑡 is evaluated using the Smagorinsky model. The wind turbine is represented by 
the force term 𝒇 using the Actuator Line Model (ALM), which is evaluated according to the Blade 
Element Theory.

∇ ∙ 𝒖 = 0

3. Solver Algorithm
The velocity-pressure coupled time integral of equation (1) is evaluated using the Fractional Step 

Method, which split the integral over one ∆𝑡 into three steps. 

1

2

𝒖∗ = 𝒖𝑛 + ∆𝑡 −𝒖𝑛 ∙ ∇𝒖𝑛 + ∇ ∙
1

𝑅𝑒
+ 𝜈𝑡 ∇𝒖𝑛

∇2𝑝𝑛+1 = ∇ ∙ 𝒖∗/∆𝑡

1qi.ji.558@s.kyushu-u.ac.jp 2ono.kenji.693@m.kyushu-u.ac.jp

𝒖𝑛+1 = 𝒖∗ − ∆𝑡∇𝑝𝑛+1

3

4

5

The linear equation resulted from the spatial discretization of equation (4) is then solved by the 
PBiCGStab algorithm with Jacobi preconditioner.

4. Implementation
We implement the program using NVidia HPC SDK (NVHPC) with each GPU managed by a process 

on the host side. GPU code is written in CUDA C++ and inter-process communication is implemented 
with MPI.

To reduce the overhead of inter-process communications, we adopt the overlapping 
communication method, which overlaps communication with computation to hide the 
communication time. In this method, the domain of a process is divided into an inner part and a 
boundary part, while the boundary part needs to wait for the inter-process communication to 
retrieve the data in the halo region, the computation of the inner part can start without waiting.

The spatial discretization of equation (4) on a three-dimensional structured Cartesian grid 
produces a well-formed banded coefficient matrix. The coefficient matrix is then represented 
efficiently by a simple array in our program.

Fig 1. overlapping communication

Fig 2. spatial discretization stencil and corresponding coefficient matrix

Performance evaluation is conducted on Kyushu University’s supercomputer ITO subsystem B. 
Each node in ITO subsystem B has 36 cores in 2 sockets and 4 Tesla P100 GPUs.

Breakdown of execution time on 1 node (4 GPUs) with a grid size of 900x300x300 for 10000 
timesteps is taken, which shows that the linear solver for equation (4) is the most time-consuming 
routine in the program.

5. Numerical Result
Numerical simulation of one experimental turbine model is carried out using our program. The 

result shows that our program is able to produce characteristic features of the wake flow such as the 
spiral tip vortices.

Fig 3. vorticity contour showing the turbine’s wake structure

Fig 4. breakdown of execution time

Strong scaling experiment is conducted with a total grid size of 900x300x300 on 4, 8, 12, 16 GPUs 
for 10000 timesteps, speedup and efficiency of parallelization are calculated based on the results. It 
is shown that routines with more communication in relation to computation suffer from more 
performance degradation when the number of GPUs increases. The overall performance is largely 
determined by the performance of linear solver, which can be explained by the overwhelming 
importance of the linear solver in the execution time breakdown.

Fig 5. strong scaling of the program

To study to performance of the linear solver, strong scaling results of the PBiCGStab solver are 
also taken. Pure GPU routines without communication show super-linear scalability, while routines 
with more global reduction (e.g. inner product and norm calculation) in relation to other operations 
suffer from the worst scalability.

Fig 6. strong scaling of PBiCGStab for eq (4)

Weak scaling experiment is conducted on 4, 8, 12, 16 GPUs with a grid size of 900x300x300 per 
node (4 GPUs) for 10000 timesteps. Routines that feature heavy computation show good scalability 
in weak scaling while routines featuring more global reductions suffer from degradation in efficiency.

Fig 7. weak scaling of the program

7. Conclusion

6. Performance Result

In this research, we implemented a multi-GPU program using MPI-CUDA hybrid parallelization for 
the CFD-based simulation of turbine wake, and studied the performance of our program in detail.

The research demonstrated the effectiveness of the application of multi-GPU technique in wind 
turbine simulations. Through performance study, we demonstrated the dominant importance of the 
linear solver for equation (4) to the overall performance of the program, as well as the effect of 
performance degradation resulted from global reduction operations.

In future research, we aim at improving the performance by reducing the number of global 
reductions in the linear solver, as well as improving the packing/unpacking operations of MPI 
communication buffers to reduce communication overhead.

References
1) Takeo Kashijima. 1999. Numerical Simulation of Turbulent Flows. Yokendo Ltd
2) Jens Nørkær Sørensen and Wen Zhong Shen. 2002. Numerical Modeling of Wind Turbine Wakes. Journal of Fluids 

Engineering 124, 2 (05 2002), 393–399. https://doi.org/10.1115/1.1471361
3) Xi Zhang, Xiaohu Guo, Yue Weng, Xianwei Zhang, Yutong Lu, and Zhong Zhao. 2023. Hybrid MPI and CUDA 

paralleled finite volume unstructured CFD simulations on a multi-GPU system. Future Generation Computer 
Systems 139 (2023), 1–16. https://doi.org/10.1016/j.future.2022.09.005


	Slide 1

