
Near kernel component setting method   
using iteration matrix in SA-AMG method

Hiromichi Sakuta 
Kogakuin University 

Japan 
em22013@ns.kogakuin.ac.jp 

Akihiro Fujii  
Kogakuin University 

Japan 

Teruo Tanaka 
Kogakuin University 

Japan 
 

1. INTRODUCTION 
Analysis by computer simulation comes down to solving 

simultaneous equations 𝐴𝑥=𝑏, and it is important to solve 
simultaneous equations fast and stably. One method for solving 
large-scale simultaneous linear equations is the SA-AMG method. 
This method coarsens the problem matrix in a hierarchical manner 
to obtain a solution, and is capable of solving large-scale problems 
at high speed. However, it depends on the problem setup. 
Conventionally, it is known that the convergence can be improved 
by setting the near kernel vector (0 eigenvalue component) [1]. In 
this study, we set the largest eigenvalue component of the 
transformation matrix applied to the error vector in the smoother as 
the component that is difficult to converge, and aim to verify its 
effectiveness. 

2. CG method with SA-AMG preconditioning 
The SA-AMG (Smoothed Aggregation Algebraic Multigrid) 

method generates a coarse lattice from an aggregate of the 
unknown variables in the fine lattice. The product of 𝐴 and the 
interpolation operator generates each lattice hierarchically (𝐴 =
𝑅 𝐴 𝑃 ).The coarse and fine lattices are solved alternately(The fine 
lattice attenuates the high-frequency components, while the coarse 
lattice attenuates the low-frequency components). Apply SGS 
(Symmetric Gauss-Seidel) smoothing at each level. Convergence 
can be improved by using components that are difficult to converge 
when generating interpolation operators. 

3. Hard-to-Converge Components 
Set a hard-to-converge component in the interpolation operator 

(R,𝑃)used to generate each hierarchy. The hard-to-converge 
component is the largest eigenvector of the matrix 𝐺(1) applied to 
the SGS error vector(𝐷, 𝐿 and 𝑈 are diagonal, lower and upper part 
of the matrix 𝐴). 

𝐺 = 𝐼 − 𝑀 𝐴 = ((𝐷 + 𝑈) 𝐿(𝐷 + 𝐿) 𝑈)  (1) 

Using the power law, multiple maximum eigenvectors are 
simultaneously obtained and set as hard-to-converge components. 
Since this experiment uses the problem matrix of a three-
dimensional structure, it has three unknowns per node. Therefore, 
to treat these unknowns together, the hard-to-converge components 
can be treated as a 3×3 block matrix Experiment. 

4. Experiment 
The problem matrix handled in the experiment is bone010.mtx 

(Oberwolfach:3D trabecular bone, Num Rows:986703, 
Nonzeros:47851783, Kind:Model Reduction Problem) obtained 
from the Suite Sparse Matrix Collection[2]. Measure solution 
convergence(Iterations) and run time (Setup Part, Iterative Part, NK 
Vec Part,NK=0 Part) when setting hard-to-converge components 
using matrix 𝐺(NK=0 : corresponding to using only 1 constant 
vector component). Compared results with blocking and without 
blocking for hard-to-converge components. 

Figure 1 shows the results when the hard-to-converge 
components are set without using blocking. Figure 2 shows the 
results when the hard-to-converge components are set using 
blocking. The left vertical axis in Figures 1 and 2 is the run time, 
the right vertical axis is the number of iterations, and the horizontal 
axis is the number of hard-to-converge components. 

 
Figure 1. The hard-to-converge components are set without 

using blocking 

 

Figure 2. The hard-to-converge components are set using 
blocking 

 

5. Conclusion 
When the maximum eigenvalue component of the matrix 𝐺 

applied to the SGS (Symmetric Gauss-Seidel) error vector was set 
to the near kernel vector of the CG method with SA-AMG 
preprocessing, convergence was achieved in less than half as many 
iterations as those without the hard-to-converge component. 
Adding the hard-to-converge component using blocking was found 
to further improve convergence. 
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