
Enhancing spatial parallelism on loop structure for FPGA
Yuka Sano, Taisuke Boku,

Norihisa Fujita, Ryohei Kobayashi
CCS, University of Tsukuba

Japan

Mitsuhisa Sato, Miwako Tsuji
R-CCS, RIKEN

Japan

EXTENDED ABSTRACT
In today’s HPC systems, GPUs with high computational perfor-
mance and memory bandwidth are the leading players. However,
GPU-based acceleration is designed to excel when utilizing many
computation cores and performing SIMD/STMD manner of syn-
chronized computation over a large number of uniform data ar-
ray elements. Therefore, it may not fully exploit its computational
performance in calculations with low parallelism, complex opera-
tions involving conditional branching, or parallel applicationswith
frequent inter-node communication to interrupt continuous com-
puting on GPU devices. One of the alternative solutions for ac-
celerated computing is FPGA (Field Programmable Gate Array),
especially with recent advancements in devices containing a large
number of logic elements, high memory bandwidth, and evenmul-
tiple channels of high-speed optical interconnection interfaces, reach-
ing up to 100 Gbps for each. The performance of an FPGA is based
on pipeline parallelism, enabling the computation stream to con-
tinue even with conditional branches.

Currently, it is available to program FPGA devices in high-level
languages such as OpenCL. However, the programmer needs high
optimization skills to exploit its potential performance. To solve
this problem of FPGA utilization for HPC applications, we have
been developing an OpenACC-ready compiler for FPGA. There are
several kinds of research on this target, such as OpenARC[2] re-
search compiler by ORNL. However, we focus more deeply on the
automatic performance optimization on the compiler level. This
research has been performed based onOmniOpenACC compiler[3]
in collaboration with the Center for Computational Sciences at the
University of Tsukuba (CCS) and RIKEN Center for Computational
Science (R-CCS).

In this study, we evaluate and examine high-level synthesis-
based FPGA programming techniques towards the compiler-based
performance optimization. At first, we examine several optimiza-
tion techniques expressed in OpenCL for Intel FPGA. Then, we
modify the current Omni OpenACC compiler for OpenACC-to-
OpenCL generation for optimized OpenCL code output for FPGA
execution. Specifically, we try various techniques to increase the
number of computational elements by spatial parallelism, such as
pipelining, loop unrolling, and simultaneous execution of multiple
kernels. Here we target the CG (Conjugate Gradient) method code
for matrix calculation described in OpenCL.

We vary the loop unroll factor and the number of kernels ex-
ecuted simultaneously to evaluate the FLOPS and BRAM (Block
RAM) usage. BRAM is a kind of private SRAMowned by each com-
putation kernel and not shared over multiple kernels. We investi-
gate the impact of increasing the number of operations within a
clock cycle on BRAMusage and explore strategies for performance
optimization. However, in FPGA, the depth of loop unrolling, the

number of used functional units, and memory usage affect the op-
erating frequency, leading to complex trade-offs. When perform-
ing loop unrolling, attention must be paid to data propagation de-
pendencies in order not to increase the initiation interval (II), which
indicates how many clock cycles each stage of the pipeline com-
pletes.Moreover, when the loop unrolling depth increases, theOpenCL
compiler for FPGA automatically generates a copy of BRAM con-
tents. Therefore, the BRAM capacity limits the performance gain
by loop unrolling depth.

Another challenge is to distribute the workload to simultaneous
multiple kernels with the domain decomposition method. How-
ever, this approach introduces kernel-to-kernel communication[1],
andwhen the number of kernels increases, the operating frequency
may decrease significantly. Therefore, it is necessary to appropri-
ately combine loop unrolling and simultaneous execution of mul-
tiple kernels depending on the execution environment. Here we
apply a technique to create multiple kernels such as distributed
memory processes in PGAS model.

Based on the optimization methods obtained in this research,
we are implementing the functionality to generate OpenCL code
optimized for FPGAs from OpenACC using the Omni OpenACC
compiler. We have already implemented loop unrolling and profil-
ers for data transfer time and kernel’s execution time in the com-
piler. This feature will provide existing FPGA programmers with
a more straightforward programming environment than OpenCL.
Additionally, the programming approach of adding directives to
sequential code is expected to reduce the amount of code and de-
velopment time. Furthermore, FPGA acceleration efforts are ex-
pected to expand to applications that have been reluctant to use
FPGA-based acceleration until now.

ACKNOWLEDGMENTS
Thisworkwas supported by JSPSKAKENHI (Grant Number 21H04869)
and the MCRP 2023 Program by the Center for Computational Sci-
ences, University of Tsukuba. We also thank the Intel University
Program for providing the hardware and software.

REFERENCES
[1] Intel FPGA SDK for OpenCL. 2022. 3.5. channels. Intel. Available:

https://www.intel.com/content/www/us/en/docs/programmable/683521/22-
4/channels-opencl-architectural-viewer.html. [Online].

[2] Seyong Lee and Jeffrey S. Vetter. 2014. OpenARC: Open Accelerator Re-
search Compiler for Directive-Based, Efficient Heterogeneous Computing.
In Proceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing (Vancouver, BC, Canada) (HPDC ’14).
Association for Computing Machinery, New York, NY, USA, 115–120.
https://doi.org/10.1145/2600212.2600704

[3] Akihiro Tabuchi, Yasuyuki Kimura, Sunao Torii, Hideo Matsufuru, Tadashi
Ishikawa, Taisuke Boku, and Mitsuhisa Sato. 2016. Design and prelim-
inary evaluation of Omni OpenACC compiler for massive MIMD proces-
sor PEZY-SC. In OpenMP: Memory, Devices, and Tasks, Vol. 9903. 293–305.
https://doi.org/10.1007/978-3-319-45550-1_21


