Performance Evaluation of OpenSWPC using Various GPU
Programming Methods

Tatsumasa Seimi
§2200609@u.tsukuba.ac.jp
University of Tsukuba
Tsukuba, Ibaraki, Japan

GPU computing already becomes standard in high-end systems.
However, the use of GPU accelerators requires additional program-
ming effort and sometimes tuning effort. There are several easy-
to-use ways of GPU programming. For NVIDIA GPU, OpenACC
and OpenMP (target) are directive-based approaches. C++ and For-
tran standard now includes parallelism (stdpar and do concurrent),
and several compilers can generate GPU code for these parallel
parts. CUDA Fortran also includes directive-based kernel genera-
tion (! $cuf kernel do), and can generate GPU code with minimum
modifications in combination with unified memory.

We use OpenSWPC [1], a Seismic Wave Propagation Code, as a
target application. The original Fortran code is designed for CPUs,
and it is parallelized with MPI and OpenMP. The main computation
of the OpenSWPC is stencil-based, but it is not uniform around the
surface and sea floor. We converted the OpenMP parallel regions
into GPU codes. The original OpenMP code parallelize only outer
loop of nested loops. For GPU, we need to use inner loops to exploit
further parallelism. We merge these nested multiple loops into
single GPU kernel to reduce the overheads of kernel launches and
IMemory accesses.

The standard parallelism and CUDA Fortran do not allow any
subroutine and function calls in GPU kernels. We need to use inlin-
ing them.

The unified memory makes GPU programming easier, however
MPI communication using unified memory has critical performance
issue [2]. It is better to use the device memory for buffer memory
if GPUDirect RDMA is supported. OpenACC, OpenMP, and CUDA
Fortran can allocate device memory explicitly. Since the standard
parallelism employs unified memory, it requires combination of
CUDA Fortran and OpenACC features as shown in Figure 1.

real (MP),private,device,allocatable::sbuf_ip(:)

!'$acc data deviceptr(sbuf_ip,sbuf_im)
do concurrent(j=jbeg: jend,k=kbeg:kend) local(ptr)
ptr=(k-kbeg)*Nsl+(j-jbeg)*Nslx(kend-kbeg+1)+1

sbuf_ip(ptr:ptr+Nsl-1)=Vx(k,iend-Nsl+1:iend, j)
end do
!$acc end data

call mpi_isend(sbuf_ip,s_isize,mpi_precision,itbl(idx+1,idy),1,
mpi_comm_world,ireql(1),ierr)

Figure 1: Explicit use of device memory for MPI communica-
tion in standard parallelism

The porting costs in the four GPU programming methods are
almost equivalent. Fortunately, inlining subroutines is easy by using
preprocessor macro. Inserting directives for OpenACC and OpenMP

Akira Nukada®
nukada@ccs.tsukuba.ac.jp
University of Tsukuba
Tsukuba, Ibaraki, Japan

are easier than replacing do loops by do concurrent constructs.
OpenACC and OpenMP without unified memory require explicit
control of data transfer between host and device. We need to make
a list of variables accessed by GPU kernels.

900
u setup
output
700 kernel__update_stress
absorb__update_stress
msource__stressdrop
mglobal__comm_stress
mkernel__update_vel
mabsorb__update_vel

Execution time (sec)

mglobal__comm_vel

ACC OMP STD CUF ACC OMP STD CUF ACC OMP STD CUF ACC OMP STD CUF ACC OMP STD CUF Xeon
4GPU 8GPU 16GPU 32GPU 64GPU 64CPU

Figure 2: Execution times for Odawara earthquake data

Figure 2 shows the performance (execution times) using Pegasus
supercomputer (Sapphire Rapids Xeon + NVIDIA H100 PCle). Inlin-
ing subroutines is applied for all cases. The nvfortran compiler of
NVIDIA HPC SDK 23.1 is used with OpenMPI 4.1.5. Performance
with OpenACC (ACC), OpenMP (OMP) and standard parallelism
(STD) are almost same. However, CUDA Fortran (CUF) increases
kernel execution times. This requires further investigations. Ope-
nACC and OpenMP do not require inlining of subroutines, however
it increases kernel execution times by 10% since the subroutine
accesses module variables directly.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number JP20K19807,

and "Joint Usage/Research Center for Interdisciplinary Large-scale
Information Infrastructures (JHPCN)" and "High Performance Com-
puting Infrastructure (HPCI)" in Japan (Project ID: jh230037). The
authors would like to thank Mr. Naruse at NVIDIA for his valuable
advice.

REFERENCES

[1] Takuto Maeda, Shunsuke Takemura, and Takashi Furumura. 2017. OpenSWPC:
An open-source integrated parallel simulation code for modeling seismic wave
propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space 69,
102 (2017), 1-20. https://doi.org/10.1186/s40623-017-0687-2

[2] AkiraNaruse, James D. Trotter, Johannes Langguth, Xing Cai, and Kengo Nakajima.
2022. High resolution simulation of cardiac electrophysiology on realistic whole-
heart geometries on Wisteria/BDEC-01 Aquarius. In SIG Technical Reports (HPC),
Vol. 2022-HPC-187. IPS], 1-7. http://id.nii.ac.jp/1001/00222549/

https://doi.org/10.1186/s40623-017-0687-2
http://id.nii.ac.jp/1001/00222549/

	Acknowledgments
	References

