
Performance Evaluations of OpenSWPC using Various GPU Programming Methods

Tatsumasa Seimi and Akira Nukada (University of Tsukuba, Japan)

OpenSWPC (Seismic Wave Propagation Code)

GPU Programming Methods for Fortran
NVIDIA CUDA was released in 2006, as the first programming environment for general-purpose
computation using GPU. It can exploit full features of GPU; however, the coding is still difficult
for many researchers in applied sciences.
As easy-to-use GPU programming methods, currently four methods are available.

(1) OpenACC
OpenACC is a directive-based extension to generate GPU code easily.

(4) CUDA Fortran
CUDA Fortran is a low-level programming model like CUDA C/C++. Using CUDA managed
memory and CUF kernels directives, we can develop GPU code in similar effort to the other
directive-based methods.

(3) Standard parallelism
Fortran 2008 includes standard parallelism for multithreading using DO CONCURRENT constructs.
NVIDIA compiler can generate GPU code for those constructs.

INTEGER, ALLOTABLE :: V(:)
INTEGER :: I, N

!$cuf kernel do <<<*,*>>>
DO I=1,N
 V(I)=V(I)+1
END DO

INTEGER, ALLOTABLE :: V(:)
INTEGER :: I, N

DO CONCURRENT (I=1:N)
 V(I)=V(I)+1
END DO

INTEGER, ALLOTABLE :: V(:)
INTEGER :: I, N

!$omp target loop map(tofrom:V)
DO I=1,N
 V(I)=V(I)+1
END DO

INTEGER, ALLOTABLE :: V(:)
INTEGER :: I, N

!$acc parallel loop copy(V)
DO I=1,N
 V(I)=V(I)+1
END DO

(2) OpenMP
OpenMP target directive generates GPU code easily. It works not only NVIDIA GPU but also AMD
and Intel.

0

50

100

150

200

250

300

350

400

450

INLINE ORIG INLINE ORIG INLINE ORIG INLINE ORIG INLINE ORIG

4GPU 8GPU 16GPU 32GPU 64GPU

Ex
ec

ut
io

n
Ti

m
e(

se
c.

)

global__comm_vel
absorb__update_vel
kernel__update_vel
global__comm_stress
source__stressdrop
absorb__update_stress
kernel__update_stress
output
setup

Subroutine Calls
The original OpenSWPC requires subroutine calls in GPU code. Standard parallelism and CUDA
Fortran need inlining of those subroutines. OpenACC and OpenMP allows subroutine calls by
using directives, however it may degrade the performance. The subroutine calls are included in
“output” phase which consumes negligible time. On the other hand, it extends the elapsed times of
all the other kernels.

0

100

200

300

400

500

600

700

800

900

ACC OMP STD CUF ACC OMP STD CUF ACC OMP STD CUF ACC OMP STD CUF ACC OMP STD CUF Xeon

4GPU 8GPU 16GPU 32GPU 64GPU 64CPU

Ex
ec

ut
io

n
tim

e
(s

ec
)

setup

output

kernel__update_stress

absorb__update_stress

source__stressdrop

global__comm_stress

kernel__update_vel

absorb__update_vel

global__comm_vel

Performance Evaluations

This work was supported by JSPS KAKENHI Grant Number JP20K19807, and "Joint
Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN)" and
"High Performance Computing Infrastructure (HPCI)" in Japan (Project ID: jh230037). The authors
would like to thank Mr. Naruse at NVIDIA for his valuable advice.

Acknowledgments

We evaluate the performance of OpenSWPC using four GPU programming methods, and Pegasus
supercomputer at CCS, U. Tsukuba (Sapphire Rapids + NVIDIA H100 PCIe, NVHPC 23.1). We
use Odawara earthquake data (strong scaling). Performance of OpenACC, OpenMP and standard
parallelism are almost comparable, but CUDA Fortran shows much lower. Although generated PTX
kernels are similar to those of the other methods, number of registers becomes much larger, which
may degrade occupancy and efficiency of GPU kernels.

OpenSWPC is an open-source seismic wave propagation code developed by Furumura, et al.
The code is written in Fortran 90 and parallelized by OpenMP and MPI. We offload all OpenMP
parallel regions in main loop to GPU.

In the main loop of the OpenSWPC code, velocity
and stress values are updated alternately. The
computation is like 3D-stencil, but it is not uniform
around sea floor and surface. To exploit massive
parallelism of GPU, we need to modify the
complex nested loops.

Code conversion

As we are converting OpenMP + MPI hybrid program into GPU program, the communication
between GPU is performed by the MPI library. For systems with GPUDirect RDMA support, it
is better to use device memory for communication buffers. The unified memory is the worst,
because it is impossible to pin down it for efficient data transfer.
OpenACC, OpenMP and CUDA Fortran can use device memory explicitly. In case of standard
parallelism, we need to employ CUDA Fortran and OpenACC features to use device memory.

real,device,allocatable :: sbuf(:)

!$acc data deviceptr(sbuf)
do concurrent (k=kbeg:kend)
 sbuf(k) = vx(k)
end do
!$acc end data

call MPI_Isend(sbuf,…)

Add device attribute（CUDA Fortran）

Specify sbuf is device-side
address（OpenACC）

MPI function handles device address

Packing data into send bufferdo i=ibeg, iend
 do j=jbeg, jend
 do k=kbeg_k, kend_k
 d3Sx3(k) = …
 end do
 do k=kfs_top(i,j),kfs_bot(i,j)
 d3Sx3(k) = …
 end do
 do k=kob_top(i,j), kob_bot(i,j)
 d3Sx3(k) = …
 end do
 do k=kbeg_k, kend_k
 Vx(k,i,j) = … d3Sx3(k) …
 end do
 end do
end do

do concurrent (i=ibeg:iend, j=jbeg:jend, k=kbeg_k:kend_k) local(d3Sx3)
 d3Sx3 = …
 if (k>=kfs_top(i,j) .and. k<=kfs_bot(i,j)) then
 d3Sx3 = …
 end if
 if (k>=kob_top(i,j) .and. k<=kob_bot(i,j)) then
 d3Sx3 = …
 end if
 Vx(k,i,j) = … d3Sx3 …
end do

kbeg_k

kend_k

kfs_top

kfs_bot

kob_top

kob_bot

kbeg_k

kend_k

Common optimization

Communication buffer

If you know the code in detail, the coding costs in the four methods are almost same. For
GPU kernels, OpenACC, OpenMP and CUDA Fortran insert necessary directives. On the
other hand, standard parallelism rewrite DO loops into DO CONCURRENT loops. We think
inserting directives is easier.
Since standard parallelism and CUDA Fortran (in our method) use unified memory, we
don’t need to check which variables are used in GPU kernels. For OpenACC and OpenMP,
without unified memory, we need to manually control the data transfers between host and
device. This task will be hard for large-scale applications.

	スライド番号 1

