
Center for Computational Research

buffalo.edu/ccrNSF OAC Award: 2004954

Abstract

Slurm is an open-source job scheduling system widely

used in many high-performance computing (HPC)

resources. A Slurm simulator facilitates parameter tuning

to optimize throughput or meet specific workload

objectives. In the previous simulator version (v2) [3], the

priorities were to minimize the changes to core Slurm and

have a high simulation accuracy. This resulted in speed-

dependent accuracy and a simulation speed only 20-40

times faster than real-time (for a midsized system). This

is not a very practical simulation speed, and it is more

beneficial to trade some accuracy for increased speed.

The expectation was that with diminished absolute

accuracy, we could still make reasonable relative

predictions.

To achieve the desired speed-up goal, we use the same

strategy as in our original Slurm simulator (v1) [1,2]

namely: serialize the code and call all Slurm functions

from a single thread in an event-driven fashion. Our

simulator's resulting version (v3) has more than 500

times acceleration over real-time, allowing simulation of a

month-long workload in 90 minutes.

The simulator was tested on a Mid-sized System

containing 216 heterogeneous nodes containing a

mixture of resources (two types of regular compute

nodes, large memory nodes, and GPU nodes). The

workload (also known as job traces) was based on the

historical workload at our center and consisted of almost

30,000 jobs. It requires more than 29 actual days to be

executed. The reference data was obtained using our

Virtual Cluster, where each cluster node is represented

with its own container and has a normal Slurm installed

on it (see [3] for more details). To estimate the ability to

predict relative values rather than absolute ones, we also

vary the priority factor of several QoS groups (priority and

supporters) while keeping the general QoS the same.

The scheduling in Slurm is a stochastic process [1,2],

which has a particularly high manifestation on highly

utilized systems. Therefore, it is crucial to have a

sufficient number of independent runs. It is easy to obtain

multiple runs with the Slurm simulator as it is several

hundred times faster than real-time; however, Virtual

Cluster goes only as fast as real-time, and it takes a lot of

time to get through 29 days of the test workload.

For a Mid-sized system, we found that the absolute value

of mean wait time differs between Virtual Clusters and

Slurm Simulator. However, the trend is very similar,

especially on higher values of mean wait time.

Introduction
• Slurm is an open-source resource workload manager

for HPC systems

• It provides high configurability for heterogeneous

resources and job scheduling

• It is used on a large range of HPC resources from

small to very large systems.

• All current and large portion of ACCESS-CI HPC

resources uses SLURM

Computational jobs can be scheduled differently:

FIFO:
Jobs 4 and 5 have

higher priority:

In our previous version (v2):

• The approach to converting Slurm to a Slurm simulator

was to maintain a multi-thread design, minimize the

changes to core Slurm (to improve code merging

capabilities), and have a high simulation accuracy.

• Unfortunately, it resulted in a simulator for which

accuracy was simulation-speed dependent, and speed

itself was not very high. For the midsized system (217

nodes), it was in the range of 20-40 times faster than

real-time. That is a month-long workload simulation is

done in one day.

• This is not a very practical speed, given that you need a

number of runs to generate a statistically significant

result.

It would be more practical to trade some accuracy for the

simulation speed. The goal of this round of developments

is a good speed-up with reasonable accuracy.

Narrow Distribution
≈Deterministic

Wide distribution Sleep 60 sSleep 60 sMS Sleep …Sleep …

Sleep 120 sSleep 120 s BF Sleep 120 sSleep 120 s

Time
Main Priority Based Scheduler:

Backfill Scheduler:

MS

Sleep 300 sSleep 300 s

Time-limit exceeding jobs checker:

MS

JC

Challenges with Slurm Simulation
• Job scheduling is stochastic process

• Several scheduling related routines are executed

in aperiodic manner and asynchronously

between each other

• In general, the location of user’s job submission

time around these routines is uncertain.

• Jobs starting time in same workload are

dependent due to competition for same resources

• Single workload realization is one

multidimensional data-point

• We need multiple workload realization (Slurm runs

Results: Micro System, 500 job workload

Conclusion

The new version of Slurm is sufficiently different from the

older version, and thus, to assess the accuracy of a new

simulator, we need to regenerate the reference workload

realization (done with Virtual Clusters). So far, we have

analyzed the accuracy on our small 10-node cluster, and

the simulator shows results very similar to the actual

Slurm. For the midsized system, we only compared the

simulator to the older version of the actual Slurm, and the

results are similar to our previous generation of Slurm

simulator. We still need to further analyze the accuracy,

however the initial conclusion is that we achieved a

significant speed-up with little or no loss of accuracy. The

resulting third version of our simulator has more than 500

times acceleration over real-time allowing simulation of a

month-long workload in 90 minutes.

Acknowledgements
This work was supported by the National Science Foundation under

awards OAC 2004954.

This work used compute resources at UB CCR and the ACCESS-CI

through allocation CCR120014.

References
1. N.A. Simakov, R.L. DeLeon, Y. Lin, P.S. Hoffmann, and W.R. Mathias. 2022.

Developing Accurate Slurm Simulator. In Practice and Experience in Advanced

Research Computing (PEARC ’22), July 10–14, 2022, Boston, MA, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3491418.3535178

2. N.A. Simakov, R.L. DeLeon, M.D. Innus, M.D. Jones, J.P. White, S.M. Gallo,

A.K. Patra, and T.R. Furlani. 2018. Slurm Simulator: Improving Slurm

Scheduler Performance on Large HPC Systems by Utilization of Multiple

Controllers and Node Sharing. In Proceedings of the Practice and Experience

on Advanced Research Computing (Pittsburgh, PA, USA) (PEARC ’18).

Association for Computing Machinery, New York, NY, USA Article 25, 8 pages.

https://doi.org/10.1145/3219104.3219111

3. N.A. Simakov, M.D. Innus, M.D. Jones, R.L. DeLeon, J.P. White, S.M. Gallo,

A.K. Patra, and Thomas R Furlani. 2017. A slurm simulator: Implementation

and parametric analysis. In International Workshop on Performance Modeling,

Benchmarking and Simulation of High Performance Computer Systems.

Springer International Publishing, Cham, 197–217. https://doi.org/10.1007/978-

3-319-72971-8_10

Test Systems and Reference Workload

Micro Cluster (10 Nodes)

Specially designed to test different

aspects of job placement

• 4 Compute Node with CPU-N

• 4 Compute Node with CPU-M

• 1 GPU Node with 2 GPUs

• 1 Large Memory Node

Workloads:

• 500 jobs: 500 jobs, 5 users, 2

accounts

• 13.7 hours to run on Virtual

Cluster

• 20 runs were performed

• 500 jobs shrunken:

• 48 minutes to run on Virtual

Cluster

• Small: 20 jobs

• Few minutes to run

UB-HPC Cluster (217 nodes)

Modelled after newer part of our

center academic HPC cluster

• 32 cores per node nodes:

• 87 Compute nodes

• 2 GPU nodes

• 40 cores per node nodes:

• 96 Compute nodes

• 8 GPU nodes

• 24 large memory nodes

Workload

• Based on historic workload and

contains 29,678 jobs from 95 user

among 65 groups.

• 29.4 days per run on Virtual

Cluster

• 8 runs were done.

New Slurm Simulator

• Based on Slurm 23.02

• To achieve the desired speed-up goal, we use the

same strategy used in our original Slurm simulator

(v1), namely: serialize code and call all Slurm

functions from a single thread within an event-driven

fashion (example of events: submit job, start job, run

backfill scheduler). Serial execution removes the

time spent in thread locks, and event-based

simulation allows more aggressive time skipping.

• To minimize Slurm core code modifications, we

used several approaches to alter the Slurm

execution:

• used the GCC compiler option to wrap standard

library functions (--wrap option for gettimeofday,

sleep and so on)

• used the constructor method to initialize the

simulator and thus avoid modifications to the

main functions and

• to access static variables and functions we

created a wrapper for the source code with

additional functionality to access variables and

functions of interest.

• Time handling:

• Normally time progress with regular speed

• it is possible to scale time to model faster or

slower hardware

• Opportunistic time skipping is done by

calculating the time to the next event, if the time

is within a threshold the clock is incremented

• Text-based specification for batch jobs extends

sbatch format:

-dt 1 -e submit_batch_job | -J jobid_1002 -sim-walltime -1 --uid=user1 \

 -t 00:01:00 -n 1 --ntasks-per-node=1 -A account1 -p normal -q normal \

 --constraint=CPU-N pseudo.job

-dt 2 -e submit_batch_job | -J jobid_1003 -sim-walltime 5 --uid=user4 \

 -t 00:01:00 -n 1 --ntasks-per-node=1 -A account2 -p normal -q normal \

 --mem=500000 pseudo.job

Slurm Simulator code, Various utilities and
documentation are available at

https://github.com/ubccr-slurm-simulator

Docker image in preparation

Changing configuration on live system can have

unintended adverse consequences

• It is also often hard to judge the effect

Why do We Need a Slurm Simulator?

• Finding the most optimal parameters for a Slurm

deployment

• To check Slurm configuration prior to deployment

• Future system modeling

• Obtain results faster than a real time!

Events Diagram

𝑥1

𝑥2

11 33

22

66

5544

blue and orange dots
drawn from same

distribution

𝑥1

𝑥2

11
33

22

66

55
44

blue and orange dots
drawn from same

distribution

Distance ordered points:

 4 2 6 3 5 2 3 4 6 5

Results: UB-HPC System, 217 nodes, 29,678 jobs

Distances between Real and Simulated workload realizations

For micro-cluster both version of simulator (v2 and v3) are

close to respective versions of Slurm.

New version of Slurm simulator produces results which are

closer to actual Slurm than faster execution of previous

version (new version is still faster).

Comparing two realization:

• For short workloads Virtual Cluster and Slurm

simulator can produces identical realization

• Using events diagram

• Using Euclidian distance between two runs. If 𝑤𝑖𝑗

is a wait time for j-th job in i-th realization, then the

Euclidian distance between i-th and i’-th realization

is 𝑑𝑖𝑖′ = σ𝑗=1
𝑛 𝑤𝑖𝑗 − 𝑤𝑖′𝑗

2

Compare multiple realization:

• Using Euclidian distance between multiple runs,

plot it as a heatmap

• For hypothesis testing multivariate Wilcoxon rank

sum test is used

Methods
Developing Accurate Slurm Simulator

1. Start from most resent Slurm version,

2. Apply changes

3. Check that it still produce same result as

reference workload realizations

4. Repeat 2 and 3 until you got fast and accurate

Slurm Simulator

Multiple reference workload realizations is calculated

with Virtual Clusters and normal Slurm installation

• Virtual Clusters implements HPC clusters using

Docker containers

• One container per head node and each compute

node

• Regular Slurm is installed

Slurm Simulator Development: Balancing Speed, Accuracy, and Maintainability
Nikolay A. Simakov1 (PI), Robert L. DeLeon2 (Co-PI)
1nikolays@buffalo.edu,2rldeleon@buffalo.edu

Job scheduling is stochastic process
Same job, same Slurm configuration –

different realization

How to run Slurm Simulator

• Start slurmdbd

• Execute sacctmgr

• Start modified slurmctld
with “initial seed” 𝑑𝑡𝑠𝑡𝑎𝑟𝑡

Slurm Config
slurm.conf, slurmdb.conf,…

Slurm Simulator Config
sim.conf, users.dat

Slurm Account Manager Script
sacctmgr.script

Slurm events list
trace_jobs.events

slurmsim orchestrator

Analyse results in R
RSlurmSim library

• Read multiple sacct.log
• Do analysis
• Some typical analysis are

provided in R markdown
notebooks

To estimate the ability to predict relative values rather

than absolute ones, we also vary the priority factor of

several QoS groups (priority and supporters) while

keeping the general QoS the same. For a Mid-sized

system, we found that the absolute value of mean wait

time differs between Virtual Clusters and Slurm

Simulator. However, the trend is very similar, especially

on higher values of mean wait time.

Distances between Real and Simulated workload realizations

https://github.com/ubccr-slurm-simulator

	Slide 1

