
A New Matrix Reordering Method
for GPU Acceleration of an ILU Preconditioner

Kengo Suzuki
Hokkaido University

Graduate School of Information
Science and Technology

Sapporo, Japan
kengo.suzuki@eis.hokudai.ac.jp

Takeshi Fukaya
Hokkaido University

Information Initiative Center
Sapporo, Japan

fukaya@iic.hokudai.ac.jp

Takeshi Iwashita
Kyoto University

Academic Center for Computing and
Media Studies
Kyoto, Japan

iwashita@i.kyoto-u.ac.jp

1 INTRODUCTION
We are interested in solving the following large sparse linear system
using the Krylov subspace method on a GPU:

𝑨𝒙 = 𝒃, where 𝑨 = {𝑎𝑖, 𝑗 } ∈ R𝑛×𝑛, 𝒃, 𝒙 ∈ R𝑛 . (1)

Due to the current trend in computer hardware architecture, there
is an increasing demand for Krylov subspace solvers (and precondi-
tioners) that can utilize accelerators such as GPUs.

The ILU(0) preconditioner has been widely used on CPUs, but its
straightforward implementation cannot maximize GPU utilization
because of its inherent data dependency in the substitution process.
Thus, we focus on matrix reordering to enhance the fine-grained
concurrency of ILU(0). Specifically, we extend our hierarchical block
multi-color (HBMC) ordering [2] to GPU implementation and also
propose a new variant of HBMC called multi-stage multi-color
(MMC) ordering.

Recently, as another approach to improving ILU(0), there has
been an interest in replacing the substitutions with an iterative
method such as Jacobi [1]. Hence, we confirm the effectiveness of
our technique by comparing it with this type of preconditioner.

2 HBMC ORDERING
The HBMC ordering is a variant of the standard multi-color (MC)
ordering that can remedy the convergence rate deterioration while
maintaining the concurrency via a block structure.

HBMC comprises three steps: blocking, coloring, and reordering,
and uses a graph whose adjacency matrix is 𝑨 +𝑨T. First, the node
set is divided into small subsets (blocks) of size 𝑛𝑏 . Then, the blocks
are labeled (colored) such that no dependent blocks have the same
color; the dependence between two blocks, 𝐵 and𝐶 , is defined when
the following expression is true:

∃𝑖 ∈ {1, . . . , 𝑛𝑏 } : ∃ 𝑗 ∈ {1, . . . , 𝑛𝑏 }, 𝑎𝐵𝑖 ,𝐶 𝑗
≠ 0, (2)

where 𝐵𝑖 and 𝐶𝑖 denote the indexes of the 𝑖-th nodes in 𝐵 and 𝐶 ,
respectively. Finally, the nodes (and the corresponding adjacency
matrix) are reordered based on the color attribute. After ordering
the blocks of the same color in a sequence, in each color, 𝑖-th (𝑖 =
1, . . . , 𝑛𝑏 ) nodes in the blocks are gathered to generate concurrency.

Although we developed HBMC for utilizing CPU SIMD, it can
exploit GPU parallelism if a sufficient number of blocks are labeled
with the same color.

3 MMC ORDERING
We propose the MMC method for further increasing the concur-
rency generated by HBMC. In MMC, the dependence between two

blocks is redefined by

∃𝑖 ∈ {1, . . . , 𝑛𝑏 } : 𝑎𝐵𝑖 ,𝐶𝑖
≠ 0. (3)

This definition is of a stricter form of expression (2), and thus, more
blocks can be labeled in the same color, increasing the fine-grained
concurrency in the substitution process.

4 NUMERICAL RESULTS
We conducted numerical tests on a computing node with NVIDIA
V100 GPUs. The test matrices were from the SuiteSparse matrix
collection, and the right-hand side vectors were random. We devel-
oped four ILU(0) preconditioners used with FGMRES(50); the three
were combined with MC, HBMC, and MMC, respectively, and the
other was with the asynchronous triangular solver in Ref. [1]. We
refer to these four as MC-, HBMC-, MMC-, and Async-ILU(0).

Figure 1 shows the speedup overMC-ILU(0). The proposedMMC-
ILU(0) was the fastest among the three ordering-based methods
in 7 out of 9 test cases. Furthermore, MMC-ILU(0) outperformed
Async-ILU(0) in 7 out of 9 cases, including that MMC-ILU(0) could
perform well in the tests that Async-ILU(0) required long time to
converge, such as G3_circuit and ldoor. It was confirmed that in
the best case, MMC-ILU(0) can improve the execution speed by up
to almost 50% over MC-ILU(0).

G3_circuit
atmosmodd

atmosmodj
Transport t2em

Thermal2 ss ldoor
Serena

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p 

ov
er

 M
C-

ILU
(0

)

HBMC
MMC
Async

Figure 1: Speedup over MC-ILU(0)

REFERENCES
[1] Hartwig Anzt, Edmond Chow, and Jack Dongarra. 2015. Iterative sparse triangular

solves for preconditioning. In Euro-Par 2015: Parallel Processing: 21st International
Conference on Parallel and Distributed Computing, Vienna, Austria, August 24-28,
2015, Proceedings 21. Springer, 650–661.

[2] Takeshi Iwashita, Senxi Li, and Takeshi Fukaya. 2020. Hierarchical block multi-
color ordering: A new parallel ordering method for vectorization and paralleliza-
tion of the sparse triangular solver in the ICCG method. CCF Transactions on High
Performance Computing 2 (2020), 84–97.


	1 Introduction
	2 HBMC ordering
	3 MMC ordering
	4 Numerical results
	References

