A new Matrix Reordering Method
for GPU Acceleration of an ILU Preconditioner

Kengo Suzuki', Takeshi Fukaya', and Takeshi Iwashita?
"Hokkaido University, “Kyoto University

Introduction

Solve linear systems Ax = b efficiently on a GPU

Highlights of this study:
- Improve the FGMRES solver preconditioned by ILU(0) on a GPU.
- Enhance the concurrency of ILU(O) by matrix reordering.

MMC ordering (proposed method)
A variation of Imp-1 of HBMC-ILU(0) & (oo

exist around the
sub-diagonals.

Since Imp-1 accepts a structure shown in Fig. 4,
coloring can be performed more aggressively.

“. | Expand
* | the blocks

- Utilize our previous reordering method, HBEMC [1], which can increase the
concurrency of ILU(0) while maintaining the convergence rate.

A Sparse triangular systems to be solved in ILU(0) have data dependencies,
making it difficult to use GPUs effectively.

Example of the lower

© © 06 00 000 06 06 0 06 0006 0600060006060 0606000000000 6000600 0 0 Only unconnected blocks The same color blocks factor of MMC'”—U(O)
. - _ _ are labeled with the same can have connections that MMC requires fewer
Matrix reorderi ng Diagonal in MC color in BMC and HBMC. are in off-diagonal. #colors than HBMC.

Block diagonal in BMC

Enhances the concurrency of ||_U(0) N The aggressive coloring may degrade the convergence of HBMC-ILU(O0).

However, it includes a trade-off problem between
concurrency and convergence.

Numerical results

- Selected the 9 test problems from the SuiteSparse Matrix Collection.

For example,
 MC ordering (a strong candidate on GPUs)

- Solved the problems on an NVIDIA V100 controlled by an Intel Xeon.
Increases the concurrency significantly.

- Compared the five preconditioners below using the FGMRES(50) solver.
Reduces the effect of ILU(0) on convergence.

° i ' N | ist |
BMC ordering (a typical method on CPUs) C;gf:f:rg;y exist in MC (baseline) ILU(0) with MC ordering
Maintains the effect of ILU(0) on convergence. HBMC-1 ILU(0) with HBMC in Imp-1
Lacks fine-grained concurrency due to the block diagonal structures. HBMC-2 ILU(0) with HBMC in Imp-2
A ILU(0) has the same sparse pattern as 4; transforming 4 reorders ILU(0). MMC ILU(0) with MMC, a variation of HBMC-1
Async ILU(O) with an asynchronous block Jacobi solver

HBMC ordering

Evaluation on convergence

G,

S

=
o
o

=
o
o

Enables the vectorization of BMC-ILU(0) - | T e

HBMC expands the blocks (of size mxm) of BMC into a main diagonal and S O 107 - o ﬂgmg(g)

m-1 sub-diagonals. — e =N)
(1,1)-th entries Sl

@ e.X., block size is 3x3 of all blocks) Prevented the loss

of ILU(O)’s effect

=
9
(®))

o)

— T T T T .;'.‘ T
0 2000 4000 6000 0 1000 2000 3000
G3 circuit G3 circuit

Norm of relative residual
=
<

Norm of relative residua
=
<

=
9
o¢]

-m -
-
-

- As the block size increased, HBMC-ILU(O) achieved better convergence,
although execution time per iteration increased.

- The reordering-based ILU(0) performed well even on problems where the
lterative solver-based ILU(O) (Async) required many iterations.

Reorder so that (i, i)
entries of all blocks are

Structure generated by

Upper left part of the

example (BMC) in Fig. 1. . . HBMC. . - -
xample (BMC)InFi9- 1. lined consecutively. Evaluation on solution time
G Imp-2 was better than
N The and lower right parts are reordered in the same way. o 16 Over 1.5x speedup —— Imp-1 on many tests.
> : :
BMC- and HBMC-ILU(O) are mathematically the same in convergence. = 1471 o *
Q ® m MMC
- . S 1.2- .
Two possible GPU Implementations of HBMC-ILU(0) . S riecucing roolors by
0 1.0+--B------ B e . MMC or MC was
» Imp-1 (does not use the sub-diagonal structure) (3) Chunk having (1,1)-th o] effective.
_ _ entries of all blocks S 0.8 7 + 5
Considers HBMC as just a (#colorsxm)-color MC. AR, These have relatively
: : : Chunk having) :
N rogram ily with simpl flow. - many nonzeros,
Can be progra ed eas y with simple data flo I (2,2)-th entries (%' 0.4 N) ; o block-based ordering
Requires (#colorsxm)-1 synchronization. ‘ I 63}:\«':’: mosmgﬁmosm%éosp‘“ ’@emme(ma\ requires many #colors.

* Imp-2 (Utilizes the sub-diagonal structure)

Conclusions

- Block-based matrix reordering is effective in accelerating ILU(0) even
on a GPU and can outperform the iterative solver-based approach.

Removes the redundant synchronization. N
Requires only #colors-1 synchronization. %ﬁ
Needs a more complex program; Per color, Example of the lower

the thread responsible for a certain row of the tactor of HBMC-ILU(0)
chunk having (1,1)-th entries computes

sequentially the same rows in the chunks This can be regarded as a - HBMC (in imp-2) is effective for problems with few nonzeros, while MC
and MMC are useful for problems with many nonzeros.

inCIUding(i’i)-th(i=2"”,m)entries' 9-COIOrMC-ILU(O)Ifthe ® ¢ 6 ¢ 6 ¢ & 6 & o & o ¢ o o o o o o o o o o o ©°o o o O o o o °o ° °o ° °o ° o o °o o
Imp-2 is not described in the extended abstract. sub-diagonals are ignored. [1] T. lwashita, et. al. CCF Transaction on High Performance Computing 2 (2020), 84-97.

HPC Asia 2024, January 25—27 2024, Nagoya, Japan

	Introduction
	Matrix reordering
	HBMC ordering
	MMC ordering (proposed method)
	Numerical results
	Conclusions

