
 

Introduction
Solve linear systems Ax	=	b efficiently on a GPU
Highlights of this study:
- Improve the FGMRES solver preconditioned by ILU(0) on a GPU.
- Enhance the concurrency of ILU(0) by matrix reordering.
- Utilize our previous reordering method, HBMC [1], which can increase the

concurrency of ILU(0) while maintaining the convergence rate.

Sparse triangular systems to be solved in ILU(0) have data dependencies,
making it difficult to use GPUs effectively.

Matrix reordering
Enhances the concurrency of ILU(0)
However, it includes a trade-off problem between
concurrency and convergence.
For example,
• MC ordering (a strong candidate on GPUs)

Increases the concurrency significantly.
Reduces the effect of ILU(0) on convergence.

• BMC ordering (a typical method on CPUs)
Maintains the effect of ILU(0) on convergence.
Lacks fine-grained concurrency due to the block diagonal structures.

ILU(0) has the same sparse pattern as A; transforming A reorders ILU(0).

HBMC ordering
Enables the vectorization of BMC-ILU(0)
HBMC expands the blocks (of size m×m) of BMC into a main diagonal and
m-1 sub-diagonals.

The center and lower right parts are reordered in the same way.
BMC- and HBMC-ILU(0) are mathematically the same in convergence.

Two possible GPU Implementations of HBMC-ILU(0)
• Imp-1 (does not use the sub-diagonal structure)
Considers HBMC as just a (#colors×m)-color MC.

Can be programed easily with simple data flow.
Requires (#colors×m)-1 synchronization.

• Imp-2 (Utilizes the sub-diagonal structure)
Removes the redundant synchronization.

Requires only #colors-1 synchronization.
Needs a more complex program; Per color,
the thread responsible for a certain row of the
chunk having (1,1)-th entries computes
sequentially the same rows in the chunks
including (i, i)-th (i = 2,…,m) entries.

Imp-2 is not described in the extended abstract.

MMC ordering (proposed method)
A variation of Imp-1 of HBMC-ILU(0)
Since Imp-1 accepts a structure shown in Fig. 4,
coloring can be performed more aggressively.

The aggressive coloring may degrade the convergence of HBMC-ILU(0).

Numerical results
- Selected the 9 test problems from the SuiteSparse Matrix Collection.
- Solved the problems on an NVIDIA V100 controlled by an Intel Xeon.
- Compared the five preconditioners below using the FGMRES(50) solver.

Evaluation on convergence

- As the block size increased, HBMC-ILU(0) achieved better convergence,
although execution time per iteration increased.

- The reordering-based ILU(0) performed well even on problems where the
Iterative solver-based ILU(0) (Async) required many iterations.

Evaluation on solution time

Conclusions
- Block-based matrix reordering is effective in accelerating ILU(0) even

on a GPU and can outperform the iterative solver-based approach.
- HBMC (in imp-2) is effective for problems with few nonzeros, while MC

and MMC are useful for problems with many nonzeros.

[1] T. Iwashita, et. al. CCF Transaction on High Performance Computing 2 (2020), 84–97.

Name Description
MC (baseline) ILU(0) with MC ordering
HBMC-1 ILU(0) with HBMC in Imp-1
HBMC-2 ILU(0) with HBMC in Imp-2
MMC ILU(0) with MMC, a variation of HBMC-1
Async ILU(0) with an asynchronous block Jacobi solver

HPC Asia 2024, January 25—27 2024, Nagoya, Japan

＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼
＼

Example of MC and BMC.
Nonzeros only exist in
colored area.

Diagonal in MC
Block diagonal in BMC

＼
＼
＼

＼ ＼
＼ ＼
＼ ＼

＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼

＼
＼
＼ ＼
＼ ＼
＼ ＼ ＼
＼ ＼ ＼

＼
＼
＼ ＼
＼ ＼
＼ ＼ ＼
＼ ＼ ＼

Example of the lower
factor of HBMC-ILU(0)

＼
＼
＼
＼

＼ ＼
＼ ＼
＼ ＼
＼ ＼

＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼

＼
＼
＼

＼ ＼
＼ ＼
＼ ＼

＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼

Example of the lower
factor of MMC-ILU(0).
MMC requires fewer
#colors than HBMC.

A new Matrix Reordering Method
for GPU Acceleration of an ILU Preconditioner

Kengo Suzuki1, Takeshi Fukaya1, and Takeshi Iwashita2

1Hokkaido University, 2Kyoto University

HPC Asia 2024, January 25—27 2024, Nagoya, Japan

Nonzeros can
exist around the
sub-diagonals.

Prevented the loss
of ILU(0)’s effect

These have relatively
many nonzeros;

block-based ordering
requires many #colors.

Reducing #colors by
MMC or MC was

effective.

Over 1.5x speedup
Imp-2 was better than
Imp-1 on many tests.

This can be regarded as a
9-color MC-ILU(0) if the

sub-diagonals are ignored.

Upper left part of the
example (BMC) in Fig. 1.

e.x., block size is 3×3

1 2 3
1
2
3 1 2 3

1
2
3

・・・

＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼

＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼

＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼
＼ ＼ ＼

Structure generated by
HBMC.

Reorder so that (i, i)
entries of all blocks are
alined consecutively.

(1,1)-th entries
of all blocks

・・・
Only unconnected blocks
are labeled with the same
color in BMC and HBMC.

・・・

・ ・・ ・・ ・
The same color blocks
can have connections that
are in off-diagonal.①

②

③

④

⑤
Expand

the blocks

⑥ ⑦

⑧

(2,2)-th entries

Chunk having (1,1)-th
entries of all blocks

(3,3)-th entries

Chunk having
(2,2)-th entries

1
2
3

1 2 3

Block size m

	Introduction
	Matrix reordering
	HBMC ordering
	MMC ordering (proposed method)
	Numerical results
	Conclusions

