

(2)

(3)

Performance comparison of the Numerical Flow Iteration to Lagrangian and Semi-Lagrangian approaches for solving the Vlasov equation in the six-dimensional phase-space

Rostislav-Paul Wilhelm¹, Fabian Orland², Manuel Torrilhon¹

¹Institute for Applied and Computational Mathematics, RWTH Aachen University ²IT Center Aachen, RWTH Aachen University

High-temperature plasmas require modelling via the Vlasov equation arising from kinetic theory [2]. Consider the Vlasov-Poisson system to model the dynamics of the electron probability distribution f = (t, x, v) $(t \in \mathbb{R}, x \in \mathbb{R}^d \text{ and } v \in \mathbb{R}^d \text{ with } d \in \{1, 2, 3\})$:

Introduction

 $\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - E \cdot \nabla_{\mathbf{v}} f = \mathbf{0}$ (1)

Curse of dimensionality \Rightarrow Direct phase-space discretization inefficient. Particle-In-Cell (PIC) and Semi-Lagrangian (SL) methods heavily memory-bound.

Turbulent model with **filamented** solutions.

NuFI: Backwards Iteration
Algorithm 1: Evaluate f with Störmer–Verlet backwards in time
At $t = t_n$: $x_h^n = x$, $v_h^n = v$ and $i = n$.
while $i > 0$ do
$v_h^{i-\frac{1}{2}} = v_h^i + \frac{\Delta t}{2} E(t_i, x_h^i).$
$x_{h}^{i-1} = x_{h-1}^{i} \Delta t v_{h}^{i-\frac{1}{2}}.$
$v_h^{i-1} = v_h^{i-\frac{1}{2}} + \frac{\Delta t}{2} E(t_{i-1}, x_h^{i-1}).$
i = i - 1.
end
Return $f_0(x_h^0, v_h^0)$.

 \blacktriangleright Trace positions backwards in time to evaluate at initial data f_0 analytically.

Two stream instability benchmark

An alternative approach to solving the Vlasov–Poisson system is NuEI [5].
Indirect evaluation of f through method of characteristics.
Store electric potential φ instead of f .
Algorithm 2: NuFI for VP with periodic boundaries
Allocate a array C for the coefficients of φ ($N_t N_x$ floats).
for $n = 0,, N_t$ do
Compute ρ_n from f_n using Algorithm 1 and the mid-point integration rule.
Solve Poisson's equation via FFT to obtain φ_n from ρ_n .
Interpolate φ_n and save the coefficients.
end
Embarassingly parallel algorithm!

Strong scaling of NuFI: CPU vs GPU

 $E = -\nabla_x \varphi,$

 $-\Delta_{x}\varphi = \rho = \int_{\mathbb{R}^{d}} f(t, x, v) \,\mathrm{d}v.$

NuFI: Forwards-time loop

 \Rightarrow PIC is unable to capture the dynamics and resolve f for long simulation times. \Rightarrow SLDG is unable to resolve f for long simulation times.

 \Rightarrow NuFI is able to resolve the fine structures while reproducing the right dynamics.

Comparing memory complexity

NuFI reduces its memory complexity by a factor $\mathcal{O}(N_v^d/N_t)$ compared to "classical approaches" (e.g. spline-based Semi-Lagrangian solver) via having quadratic runtime complexity instead of linear:

- Classical approach:
 - \Rightarrow Comp. complexity: $\mathcal{O}(N_t)$.
 - \Rightarrow Memory complexity: $\mathcal{O}(N_{u}^{d} \cdot N_{u}^{d})$
- ► Nufl:
 - \Rightarrow Comp. complexity: $\mathcal{O}(N_t^2)$. \Rightarrow Memory complexity: $\mathcal{O}(N_t \cdot N_x^d)$.

(a) Strong Scaling on CPU's: Parallel efficiency \geq 98.1%. Time given for a single (b) Strong Scaling on GPU's: Parallel efficiency \geq 86.2%. Time given for full simulation in d = 2 with $N_x = 64$, $N_y = 256$, $n_T = 480$. time-step in d = 3 with $N_x = N_y = 64$ at $n_T = 100$.

- For SeLaLib parallel efficiency reduces to \approx 50 % for runs with 64 cores with a problem size of 32⁶ DoFs (using Intel Xeon Phi nodes on DRACO) [6].
- ► Using SLDG parallel efficiency reduces to 50 % with 16 GPU's and to between 33 and 37 % for 64 to 1024 GPU's with a problem size of 40⁶ DoFs (using JUWELS with NVidia A100) [4].

Comparison of computational efficiency

	48	96	192	384	768	1536
Global Efficiency	0.9874	1.0005	0.9921	0.9855	0.9551	0.9023
Parallel Efficiency	0.9874	0.987	0.9796	0.9688	0.9489	0.8962
Process_Efficiency	0.9904	0.9907	0.9842	0.9733	0.9525	0.9014
MPI_Communication_Efficiency	1.0	1.0	1.0	0.9999	0.9997	0.9995
Process_Load_Balance	0.9904	0.9907	0.9842	0.9734	0.9528	0.9019
Thread_Efficiency	0.997	0.9963	0.9955	0.9956	0.9965	0.9948
Amdahl_Efficiency	1.0	1.0	1.0	1.0	1.0	1.0
OpenMP_Efficiency	0.997	0.9963	0.9955	0.9956	0.9965	0.9948
Computational_Scaling	1.0	1.0137	1.0127	1.0172	1.0065	1.0067

(a) Strong scaling of NuFI on 1-32 nodes (48 - 1536 cores) on CLAIX-2018.

▶ Performance analysis using additive hybrid POP metrics for NuFI [1]: Shows parallel efficiency over 90 % for all cases, equal distribution of work and negligible communication cost.

4-dim. phase-space ($N_t = 1000$):				6-dim. phase-space ($N_t = 1000$):						
	$N_x = N_v$	NuFI	Classic	Savings		$N_x = N_v$		NuFI	Classic	Savings
	32	7.8 MiB	8 MiB	2.5%		8	3.9	MiB	8 MiB	51.25 %
	128	0.12 GiB	2 GiB	94 %		32	0.244	GiB	8 GiB	96.95 %
	512	1.95 GiB	512 GiB	99.62 %		128	0.015	TiB	32 TiB	99.95 %
	With Nu	JFI efficie	ent use	of cache	possit	ole even	for la	ge p	oroblem	IS!

Break-Even point

There exists a break-even point n_B until which NuFI is faster and after which a classical approach becomes faster. It depends on:

 \Rightarrow Memory bandwidth & Flop/s of hardware, \Rightarrow Dimension and degrees of freedom.

References

- POP Standard Metrics for Performance Analysis of Hybrid Parallel Applications. https://pop-coe.eu/. Accessed: 2023-01-10.
- F. Chen. Introduction to Plasma Physics and Controlled Fusion. Springer Cham, 2015.
- L. Einkemmer. High performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code. Comput. Phys. Commun., 202:326–336, 2016.
- L. Einkemmer and A. Moriggl. Semi-Lagrangian 4d, 5d, and 6d kinetic plasma simulation on large-scale GPU-equipped supercomputers. The International Journal of High Performance Computing Applications, 37(2):180–196, 2023.
- M. Kirchhart and R.-P. Wilhelm. The Numerical Flow Iteration for the Vlasov-Poisson equation. arXiv, 2023.
- **K**. Kormann, K. Reuter, and M. Rampp. A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov–Poisson equation. The International Journal of High Performance Computing Applications, 33(5):924–947, 2019.
- B. Wang, G. H. Miller, and P. Colella. A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas. SIAM J. Sci. Comput., 33(6):3509–3537, 12 2011.

NuFI preprint

POP metrics

https://www.acom.rwth-aachen.de

wilhelm@acom.rwth-aachen.de