
Job level parallel search in software auto-tuning

Yuga Yajima

Kogakuin University, Japan
 em23045@ns.kogakuin.ac.jp

Akihiro Fujii
Kogakuin University, Japan

fujii@cc.kogakuin.ac.jp

Teruo Tanaka

Kogakuin University, Japan
teru@cc.kogakuin.ac.jp

1 Introduction

Software auto-tuning (AT) is technology to improve performance

by automatically controlling parameters which affect performance

(performance parameters) in a program. In AT, to search for

appropriate values for the performance parameters, the program is

iteratively executed while fitting various values to the

performance parameters. On the other hand, from 2000s on,

machine learning field is attracting a lot of attention. In machine

learning program, it is important to select proper hyperparameters.

Therefore, hyperparameters of machine learning can be treated as

performance parameters. However, machine learning programs

take a long time per execution. Therefore, we have reduced the

time by parallelizing the search [1].

By setting the number of parallels appropriately, the search can be

properly conducted. The appropriate number of parallels depends

on the amount of available computing resource, but if other tasks

are being executed, the available computing resource is not

constant. Therefore, it is difficult to set the appropriate number of

parallels. In this study, we implemented a mechanism that

dynamically recognizes the available computing resource on a

supercomputer and sets the appropriate number of parallels.

2 Parallel searching using “Jobs”
There are three parallel levels of supercomputers: threads,

processes, and jobs. Our searching is using job for parallelize.

When user requests the supercomputer system to execute a

program, user sets a job. Supercomputer system always checks

usage of all users and if node is free, job is executed. A job is a

level that requests the system to execute a program, and the

number of parallels cannot usually be managed from the program.

Figure 1: Adding a mechanism to dynamically recognize

the amount of computing resource

If the amount of computational resource is not taken into account,

a part of computational resource is wasted because fractions of

parallel execution are created. Therefore, we implemented a

mechanism to dynamically recognize available computing

resource from the program. Figure 1 shows the mechanism. If

there is no room in the node, job execution is in pending. So, by

measuring the time from setting job to start execution, we can

recognize how crowded system is. It also allows for the

appropriate number of parallel runs by cancelling the execution of

jobs when there is no room in the computing resource.

3 Experiments and results

We experimented with the aforementioned search by applying it

to a machine learning program. The execution environment was

“Flow” Type II Subsystem in Nagoya University. Figure 2 shows

the execution time of each job. The vertical axis represents the

time elapsed since the first job started running. And each vertical

line in the figure is the time when each job is being executed.

Figure 2: Reduction of job execution time

The conventional method often produced fractions of time that did

not allow the appropriate number of parallels to be specified, but

the addition of the new mechanism allowed the maximum number

of parallels to be specified at all times. As a result, the search time

was reduced by more than 50 percent while maintaining the final

performance.

4 Conclusion
AT requires an enormous amount of time due to repeated trial and

error, and we have made the search more efficient through

parallelization. The maximum number of parallels was recognized

by measuring the period from the job submission time to the start

time, and a time reduction of more than 50 percent was achieved.

ACKNOWLEDGMENTS
This work is supported by “Joint Usage/Research Center for

Interdisciplinary Large-scale Information Infrastructures” in Japan

(Project ID: jh220044 and jh230045) and JSPS KAKENHI Grand

Number JP 18K11340 and 23K11126.

REFERENCES
[1] Sorataro Fujika, Yuga Yajima, Teruo Tanaka, Akihiro Fujii,

Yuka Kato, Satoshi Ohshima, and Takahiro Katagiri.

Parallelization of Automatic Tuning for Hyperparameter

Optimization of Pedestrian Route Prediction Applications

using Machine Learning. HPC Asia 2023.

