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Software auto-tuning
• Software auto-tuning (AT) is a technology to improve the performance by automatically controlling "performance parameters"

► "performance parameters" are parameters that affect performance in a program

• In AT, to search for appropriate values for the performance parameters, the program is iteratively executed while fitting various values to the parameters

• In case there are multiple performance parameters, the appropriate value is to be searched among their combinations

• Since it would take an enormous amount of time to try all combinations, we have been researching for efficiency of searching

Parallel searching using "Jobs"
• To improve efficiency, we developed a mechanism to parallelize the program trials [1]

• Our searching uses jobs for parallelization (refer : Fig.1)

► The "job" is an unit that user submits the supercomputer system to execute a program

► The AT tool creates a list of candidate values to performance parameters

and submits jobs for each candidate in the list

► Each job applies the candidate which is sent from the AT tool to the parameters and executes (=> parallelized)

► When execution is complete, the user program returns the performance at that candidate value,

and the AT tool aggregates them

► The AT tool continues to search until it determines that it has achieved sufficiently good performance

• When the emphasis is on search algorithms, the number of candidates is determined by the algorithm in spite of the system circumstances

► If the number of submitted  jobs is less than the number of available slots at that moment, only some of the available nodes are used

and execution is inefficient (refer : The left part of Fig. 3)

► The number of available slots is not constant because it varies depending on system availability

Parallel job execution with the number of available slots
• The AT algorithm can freely choose to try or not to try for each parameter

► The AT algorithm works even with only partial results of search candidates

• By using this characteristic, we changed the method of creating the list of candidates

from the algorithm based to the system based

► Decide dynamically on the number of submitted jobs

according to the number of available slots at that moment

⁃ If there is no room in the node, job execution is in pending,

and it takes time from submitting the job to the start of execution

⁃ By measuring the time from submitting to starting execution (refer : Fig. 2),

the AT tool can recognize that each job is or is not pending

⁃ By cancelling pending jobs, execution can always be performed at the maximum number of parallelism

Experiment and Result
• We tested this mechanism by applying it to hyperparameter tuning in machine learning for pedestrian route prediction

► The performance is an error between the predicted arrival point and the actual arrival point. Lower value is better

• The experiment was conducted on Nagoya University's supercomputer, "Flow" Type II Subsystem

• The AT tool now recognizes the computational resources available at every step, and uses all available slots for parallel execution.

As a result, the search time was reduced while maintaining the final performance (refer : Fig. 3)

► At that moment, the number of available slots was 60. The searching time reduced from 4.1 hours to 2.6 hours

► The performance that the AT tool extracted was worse, from 1.07 [m] to 1.12 [m], but improved from the program's original performance of 1.85 [m]

Conclusion
• AT requires an enormous amount of time due to repeated trial, and we have made the search more efficient through estimation and parallelization

• The AT algorithm has the characteristic that can freely choose to try or not to try for each parameter

• The AT tool recognized the number of available slots in the system, and a time reduction was achieved
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Fig. 3    Job execution behavior
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Fig. 1    Flow of our searching

Fig. 2    Recognizing pending of jobs
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