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1 INTRODUCTION
This work investigates the parallel performance of a memory-
distributed implementation of the block ε-circulant (BEC)
preconditioning [1] with MPI. This method is a promising
parallel-in-time approach in a massively parallel environment
for all-at-once linear systems arising from time-dependent
PDEs. The BEC preconditioner introduces a weighted param-
eter ε into the block circulant preconditioner and achieves
independent convergence for spatial mesh sizes with suffi-
ciently small ε. However, its parallel performance has not
been fully investigated. This work presents its parallel result
for convection-diffusion problems.

2 BEC PRECONDITIONING
The BEC preconditioner is block circulant in time and intro-
duces a weighted parameter, ε ∈ R, in the upper-right block.
In the case of backward Euler method, PBEC becomes

PBEC =


A0 εA1
A1 A0

. . . . . .
A1 A0

 ∈ Rntnx×ntnx . (1)

Using the block circulant property in time, we can describe
BEC preconditioning z = P −1

BECy as three-step procedure in
Algorithm 1. The first and third steps are the FFT parts,

Algorithm 1 Three-step procedure of BEC preconditioning
1: Compute ỹ = [(Fnt Dε) ⊗ Inx ] y . Fnt : Fourier matrix
2: Solve Bkz̃k = ỹk for z̃k (k = 0, 1, . . . , nt − 1)
3: Compute z =

[
(D−1

ε F∗
nt

) ⊗ Inx

]
z̃ . Dε: Diag. matrix

which repeat the FFT for one-dimensional time-step-sized
vectors. We perform the data redistribution in the spatial
domain and fully independent sequential FFTs. The sec-
ond step requires a linear solver for complex-valued systems
Bkz̃k = ỹk. We use the equivalent real-valued formulation,
which splits complex numbers into real and imaginary parts,
i.e., Bk = B
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3 NUMERICAL EXPERIMENTS
We present parallel results of BEC preconditioned GMRES
(BEC-GMRES) for convection-diffusion problems. The mea-
surement environment is the Wisteria/BDEC-01 Odyssey

system equipped with 2.2GHz Fujitsu A64FX. We imple-
ment with FFTW v3.3.9 and Trilinos v14.5 on the Fujitsu
compiler and MPI with v4.9.0. Compile options are used -
std=c++17 -Nclang -Ofast -mcpu=a64fx -march=armv8-a -
fPIC.

Figure 1a shows that BEC-GMRES has good scaling per-
formance with respect to temporal parallelism. Much of the
time is spent in solving real-valued equivalent systems, as
shown in Figure 1b.
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(a) Strong scaling

512
 (Pt=32)

1024
 (Pt=64)

2048
 (Pt=128)

4096
 (Pt=256)

8192
 (Pt=512)

16384
 (Pt=1024)

Number of parallelism

0.0

0.5

1.0

Pe
rc

en
ta

ge

Breakdown of BEC-GMRES (Px=16)
GMRES: SpMV
GMRES: MGS
Prec1: FFT(+1)
Prec2: BD solve
Prec3: FFT(-1)

(b) Breakdown of BEC-GMRES

Figure 1: Parallel tests with nx = (27 +1)2 and nt = 210

4 CONCLUSION
BEC-GMRES has achieved good scaling with respect to
temporal parallelism. Future work will reduce the time in
solving real-valued equivalent systems using complex-valued
AMG solvers and inexact iteration in preconditioning step.
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