
Fast adjacent communication among with RDMA,
MPI-RMA, and Double buffering

Kota Yoshimoto
Kogakuin University

Japan

em22027@ns.kogakuin.ac.jp

Akihiro Fujii
Kogakuin University

Japan

Teruo Tanaka
Kogakuin University

Japan

1. INTRODUCTION
In large-scale scientific computing programs, parallelization by

MPI communication is generally used. MPI is convenient because

it can be executed on many computers. However, inter-process

communication often becomes a bottleneck in highly parallel

computers. There is an interface called RDMA (Remote Direct

Memory Access) to reduce the delay caused by communication.
 We have previously evaluated the performance with different

numbers of neighbors [1]. In this research, we conducted a
performance analysis includingchange of the number of processes

per node . We also evaluated the performance of one-sided

communication using MPI.

2. RDMA and RMA with Double Buffering
RDMA communication is one-sided communication. By using

dedicated memory, it can read and write data without going through

the destination node's program. There are two types of RDMA

communication: Put communication and Get communication. In

this experiment, we used Put communication. There is RMA
(Remote Memory Access) communication using MPI. This is also

one-sided communication. It is realized by MPI_Put,

MPI_Win_fence, MPI_win_lock/unlock.

In these methods with double buffering, two buffers for
communication are prepared, and when the data in the buffer is

being read, the other one communicates. Each process has two

communication buffers so that it can read one buffer while

receiving communication on the other buffer. This reduces the cost

of communication and speeds up the process.

3. Numerical Experiment
In this experiment, we used a computer called Wisteria-O at

Tokyo University. It is equipped with a system called FX1000.

 In this experiment, MPI_Isend/Irecv, MPI_RMA (MPI_Put,
MPI_Win_fence), MPI_RMA with double buffering (MPI_Put,

MPI_Win_lock/unlock), RDMA, and RDMA with double

buffering were evaluated by adjacent communication, respectively.

The total number of processes in the tests was fixed at 128.

Figure 1. Number of adjacent communication when adjacent

processes is changed

Figure 2. When changing the number of nodes

Figure 1 shows adjacent communication when changing the

number of adjacent processes. The number of adjacent processes
was changed from 2 to 32 and the processes per node ratio was 4.

In Figure. 1, the vertical axis is time of adjacent communication

and the horizontal axis is the number of adjacent processes. As a

result, all one-sided communication methods had similar

performance and were faster than MPI_Isend/Irecv.

Figure 2 shows adjacent communication when changing the

number of processes per node. The number of adjacent processes

was 32 and the processes per node was from 4 to 32. In Figure 2,
the vertical axis was time and the horizontal axis was processes per

nodes. As a result, MPI_RMA was the fastest when process per

node was small. Also, RDMA with double buffering was the fastest

when the processes per node was large.

4. Conclusion
MPI_Isend/Irecv, MPI_RMA, RDMA and RDMA with double

buffering were evaluated using adjacent communication.

MPI_RMA is effective when the number of processes per node is

small. However, when there are many processes per node, RDMA
using double buffering is also effective. We will present numerical

experiment result with different inter-process topologies and

different message sizes in the poster.

ACKNOWLEDGMENTS
This work is supported by JSPS KAKENHI Grant Number

JP22K12063, “Joint Usage/Research Center for Interdisciplinary

Large-scale Information Infrastructures” and “High Performance

Computing Infrastructure” in Japan (Project ID: jh230060-NAH).

REFERENCES
[1] Kota Yoshimoto, Akihiro Fujii, Teruo Tanaka, RDMA with

Double Buffering for Adjacent Communication,

HPCAsia2022 poster session (2022).
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2 4 8 16 32

T
im

e(
s)

Adjacent Processes

MPI_Isend/recv

MPI_RMA

MPI_RMA_DB

RDMA

RDMA_DB

0

0.002

0.004

0.006

0.008

0.01

321684

TI
m
e(
s)

Processes/Node

MPI_Isend/Irecv

MPI_RMA

MPI_RMA_DB

RDMA

RDMA_DB

