
Accelerating Lattice Boltzmann method with C++ standard

language parallel algorithm

Ziheng Yuan
 Graduate school of Engineering

 The University of Tokyo

Tokyo, Japan

 zihengyuan22@g.ecc.u-tokyo.ac.jp

Takashi Shimokawabe
 Information Technology Center

 The University of Tokyo

 Tokyo, Japan

 shimokawabe@cc.u-tokyo.ac.jp

GPUs have been widely used to accelerate computation in recent

years. From physics simulations to neural networks. Problems

with high computation or data density could be solved efficiently

by relying on the high parallel computation performance of the

GPU. Although GPU can solve problems efficiently, writing

parallel programs and running them correctly and efficiently on

GPUs remains a challenging issue, especially when the problems

are very complex. Typically, parallel programs can be written

using a dedicated language, such as CUDA or OpenCL. In this

case, since the program needs to prioritize meeting the hardware

requirements, the obtained program will not be entirely focused

on expressing the actual algorithm. Also, dedicated languages can

be limited by hardware constraints, which greatly limits the

portability and long-term maintainability of the code.

Since C++17, execution policies have been introduced into the

C++ standard library, allowing programmers to efficiently

incorporate parallelism into their programs through STL functions

that support these policies. The compiler can automatically

parallelize the execution of functions specified by the execution

policies. Additionally, dynamic memory allocation enables the

compiler to obscure the instructions for CPU-GPU

communication, allowing programmers to focus more on

expressing the algorithm rather than manually managing hardware

threads and memory resources, thereby simplifying the

complexity of writing parallel programs. Although the actual

implementation of C++ standard code relies on other existing

parallel languages, such as OpenACC or OpenMP, resulting in

slight performance losses, the strong influence of the C++

standard ensures that parallel code written in C++ will be

supported by mainstream compilers in the future and can execute

on cross-platform, with acceptable performance loss.

The immersed boundary-lattice Boltzmann method (IB-LBM) is

used in this experiment to solve the moving boundary flow

problem. The IB-LBM combines the Boltzmann method with the

immersed boundary method. In this issue, LBM is suitable for

parallelization due to its uniform grid distribution and simple

kernel algorithm. IBM, on the other hand, can solve boundary

problems without changing the grid size, and thus can also be

parallelized. In this experiment, the code using IB-LBM to solve

3D propeller simulation was selected as the experimental code.

Figure 1: Comparison of CUDA and C++ stdpar Performance

The experiment platform is Wisteria-aquarius supercomputer

provided by The University of Tokyo. GPU model is NVIDIA

A100. Each computation node contains 8 GPUs. The first issue

involves applying standard C++ to the IB-LBM simulation code

and running programs on GPUs. Another important issue

discussed in this paper is how to use available resources to

support C++ standard algorithms for solving large-scale problems.

Currently, C++ does not offer a solution to the multi-GPU

communication problem. When using C++ standard algorithms

for acceleration, it is necessary to supplement some of the

functions that C++ cannot realize with the help of existing

specialized languages. In this experiment, the LBM and IBM is

parallelized by the C++ standard algorithm, and the need for

multi-GPU communication is satisfied with the help of CUDA-

aware MPI, as well as the need for atomic operations with the

help of CUDA. CUDA-aware MPI can enable data to

communicate through NVLink, achieving GPU-GPU direct

communication. Compared with the direct use of MPI for GPU to

GPU communication, the use of NVLink reduce the time

consumption of communication by 78.5% in 32 GPUs case and

60.3% in 64 GPUs case. The performance comparation is shown

in Figure 1.

REFERENCES
[1] Latt J, Coreixas C, Beny J (2021) Cross-platform programming model for

many-core lattice Boltzmann simulations. PLoS ONE 16(4): e0250306.

https://doi.org/10.1371/journal.pone.0250306

