
Accelerating lattice Boltzmann method with C++ standard language 

parallel algorithm

Ziheng Yuan
Graduate School of Engineering, The University of Tokyo

1. Background

• The lattice Boltzmann method is a fluid simulation algorithm that is easily

parallelizable and widely used in industry field.

• C++ standard language parallel algorithm (stdpar) provides programmers with 

parallel algorithms within the standard library, reducing the complexity of 

developing parallel programs. NVIDIA C++ compiler is one of the compilers 

that support C++ stdpar. This experiment is conducted on an NVIDIA GPU.

• In practical simulations, it is often necessary to use multiple GPUs for 

computation. Currently, C++ stdpar does not provide functions for inter-GPU 

communication. How to utilize existing libraries, such as MPI or CUDA, to 

implement multi-GPU computing while retaining the advantages of C++ is the 

main focus of this presentation

2. Lattice Boltzmann method

Lattice Boltzmann method (LBM) is one of the computation methods for 

incompressible viscous fluids. This method calculates the collisions and 

translations of the particles using velocity distribution function. 

𝑓𝑖
𝑒𝑞

= 𝐸𝑖ρ 1 + 3𝑒𝑖𝑢 +
9

2
𝑒𝑖𝑢

2 −
3

2
𝑢2 1

𝑓𝑖 𝑥 + 𝑒𝑖∆𝑥, 𝑡 + ∆𝑡 = 𝑓𝑖 𝑥, 𝑡 + Ω𝑖(𝑥, 𝑡) 2

𝜌 = σ𝑖=1
𝑁 𝑓𝑖 𝑢 =

1

𝜌
σ𝑖=1
𝑁 𝑒𝑖𝑓𝑖 3

step 1 : calculate equilibrium distribution

step 2 : calculate collision and streaming

step 3 : calculate density and velocity

This experiment uses IB-LBM(Immersed Boundary Lattice Boltzmann Method). 

In order to improve accuracy, the cumulant model is used in the calculation of 

collision step.

3. C++ Standard parallel algorithm

Firstly provided by C++ 17 standard. 

Parallelizing the algorithms in C++ standard library through introducing concept 

named execution policy.

Three different execution policies:

std::execution::par

std::execution::par_unseq

std::execution::seq

Inside the execution policies, std::par and std::par_unseq will provide multiple 

threads for the algorithm, which will provide parallel execution. 

Frequently used algorithms support execution policy:

std::transform()

std::reduce()

std::for_each_n()

C++ standard language parallel algorithm is supported by the NVIDIA C++ 

compiler, allows to compile and run the code on GPUs.

4. Multiple GPU computing

When computing with multiple GPUs, the computational domain needs to be 

divided into suitable small blocks, each stored in the memory of different GPUs, 

and exchange edge data with neighboring GPUs. Many factors constrain the 

speed of multi-GPU computing, including the communication overhead between 

GPUs and synchronization overhead, among others. Compared to exchanging 

data via the CPU, using NVLink to directly exchange data between GPUs is more 

efficient.

However, C++ stdpar cannot directly utilize NVLink for communication. 

Therefore, it requires declare buffers in GPU memory through CUDA to transfer 

the data needing communication into these buffers, before utilizing NVLink for 

communication.

5. Implementation

5.1 Naïve method

Transfer boundary data stored in unified memory between GPUs directly

Data must pass through CPU 

5.2 Applying exchange buffer

Avoid transfer unified memory data directly

Using cudaMalloc function to allocate buffer space on GPU device

5.3 Applying Allreduce buffer

The IB-LBM method requires the 

computation of body force by summing up 

the forces on the boundary markers of the 

object.

MPI_Allreduce() is applied to 

calculate the body force when boundary 

points are located on multiple GPUs. 

CUDA buffer can increase the 

efficiency of reduce operation.

6. Experiment

Benchmark: propeller simulation

Size: 700*700*2560

Platform: Wisteria Aquarius UTokyo

Computation node:

CPUs: Intel Xeon Platinum 8360Y *2

GPUs: NVIDIA A100 *8

Performance Comparation unit: MLUPS

(Mega Lattice Update Per Second)

6.1 Simulation result:

By comparing the relationship between advance ratio 𝐽𝐴 and mean thrust 

coefficient 𝐾𝑇, it can be observed that the simulation results are meaningful. The 

result from stdpar and CUDA are almost identical.

6.2 Performance:

The results are as shown in the figure below; after adding the exchange buffer, 

the performance of the program has improved compared to the naïve C++ stdpar

method. Allreduce buffer could increase the performance slightly more.

The reason for the performance gap between A and B:

• The kernel function execution time of stdpar is always slightly longer than that 

of CUDA, with a difference of about 2-5 seconds between them.

• Kernel function execution time decreases as the number of GPUs increases..

7. Conclusion

HPC Asia 2024

Takashi Shimokawabe
Information Technology Center, The University of Tokyo

In this poster, we discussed the method of applying C++ stdpar to multi GPU 

computation. And verified the performance of this method in 32 and 64 GPUs 

cases.

Exchange buffer and Allreduce buffer can increase the performance of the code.

Cylinder with boundary 
markers in LBM fluid 
domain


	Slide 1

