

Calibrating Simulations of Quantum Annealers for Predictive Models

Mike Zielewski, Keichi Takahashi, Yoichi Shimomura, Hiroyuki Takizawa

Cyberscience Center

Quantum Annealing (QA)

- Quantum metaheuristic for optimization problems
- System evolves under the time dependent Hamiltonian $H(s) = A(s)H_D + B(s)H_P$ H_D : quantum fluctuations, H_P : target problem, s: annealing schedule
- Standard annealing schedule: $s(t) = t/t_a$
 - *t*: time, t_a : total time

1µs forward annealing schedule

Motivation and Objective

- Our recent work combining SVMC TF and machine learning to predict optimal pause locations demonstrated improvements in multiple metrics [2]
- However, our proposal was unable to improve time-tosolution, indicating that the predicted optimal pause location was close to, but not exactly, the true value
- Root cause: annealer μs to SVMC TF sweeps ratio (1:10k)
- What is a better approximation, is it problem dependent, and how can we find it with minimal annealer access time?

Comparing Pausing in QA and SVMC TF

Pausing

- Annealing schedule modification where s is kept constant for a period of time
- May improve results depending upon pause location

- The optimal pause location varies with problem type
 - SK Sherrington Kirkpatrick model
 - NAE3SAT1/NAE3SAT2 Not-all-equal 3-satisfiability with one and two clauses per variable, respectively
 Average energy improvement from pausing

• Problem and hardware properties, and other factors like embedding influence the optimal pause location

Spin-vector Monte Carlo with Transversefield-dependent Updates (SVMC TF) [1]

- A classical model that represents qubits with angles $\in [0, \pi]$
- Angle updates are selected near the current angle, instead of being completely random
- As the transverse field weakens, the angle update range also becomes smaller, replicating the effects of freezeout
- Metropolis-Hastings style angle acceptance
- SVMC TF can replicate the effects of pausing in QA

NAE3SAT1	.01	.03	.05	.05	.05	.07	.07	.07	.06	.07	.08	.08	.08	.07	.09
NAE3SAT2	.06	.05	.05	.05	.04	.03	.03	.03	.02	.03	.03	.02	.02	.02	.01

No single µs to sweeps ratio works for all problems

Conclusions and Future Work

- Accurately simulating pausing with SVMC TF requires tuning the number of sweeps
- The value that leads to the highest correlation with quantum annealers varies significantly with problem type
- Accurate tuning can only be performed with access to a quantum annealer
- Future work: more efficient annealer access time utilization

Acknowledgments This work was partially supported by JSPS KAKENHI Grant Numbers JP21H03449 and JP22K19764

References

"Comparing relaxation mechanisms in quantum and classical transverse-field annealing," *Phys. Rev. Appl.*, vol. 15, p. 014029, Jan 2021.
"Efficient Pause Location Prediction Using Quantum Annealing Simulations and Machine Learning," *IEEE Access*, vol. 11, p. 104285, Sep 2023.